Different initial conditions in fuzzy Tumor model
نویسندگان
چکیده
One of the best ways for better understanding of biological experiments is mathematical modeling. Modeling cancer is one of the complicated biological modeling that has uncertainty. Therefore, fuzzy models have studied because of their application in achievement uncertainty in modeling. Overall, the main purpose of this modeling is creating a new view of complex phenomena. In this paper, fuzzy differential equation model consisting of tumor, the immune system and normal cells has been studied. Model derived from a classical model DePillis in 2003, which some parameters from a clinical point of view can be described in the region. In this model, by considering fuzzy parameters from clinical point of view, the three-dimensional fuzzy tumor cells in terms of time and membership function are pictured and region of uncertainties are determined. To access the uncertainty area we use fuzzy differential inclusion method that is one of the including methods of solving differential equations. Also, different initial conditions on the model are inserted and the results of them are analyzed because tumor has different treatment in different initial conditions. Results show that fuzzy models in the best way justify what happens in the reality.
منابع مشابه
Reinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic
In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...
متن کاملOPTIMAL CONTROL OF FUZZY LINEAR CONTROLLED SYSTEM WITH FUZZY INITIAL CONDITIONS
In this article we found the solution of fuzzy linear controlled systemwith fuzzy initial conditions by using -cuts and presentation of numbersin a more compact form by moving to the eld of complex numbers. Next, afuzzy optimal control problem for a fuzzy system is considered to optimize theexpected value of a fuzzy objective function. Based on Pontryagin MaximumPrinciple, a constructive equati...
متن کاملEstimation of the Domain of Attraction of Free Tumor Equilibrium Point for Perturbed Tumor Immunotherapy Model
In this paper, we are going to estimate the domain of attraction of tumor-free equilibrium points in a perturbed cancer tumor model describing the tumor-immune system competition dynamics. The proposed method is based on an optimization problem solution for a chosen Lyapunov function that can be casted in terms of Linear Matrix Inequalities constraint and Taylor expansion of nonlinear terms. We...
متن کاملAdaptive Neuro-fuzzy Inference System Prediction of Zn Metal Ions Adsorption by γ-Fe2o3/Polyrhodanine Nanocomposite in a Fixed Bed Column
This study investigates the potential of an intelligence model namely, Adaptive Neuro-Fuzzy Inference System (ANFIS) in prediction of the Zn metal ions adsorption in comparision with two well known empirical models included Thomas and Yoon methods. For this purpose, an organic-inorganic core/shell structure, γ-Fe2O3/polyrhodanine nanocomposite with γ-Fe2O3 nanoparticle as core with average diam...
متن کاملA study on the accuracy of motion tracking of thoracic tumors at radiotherapy with external surrogates
Introduction: In radiotherapy with external surrogates, exact information of tumor position is one of the key factors that improves treatment delivery. Many dynamic tumors in thorax region of patient move mainly due to respiration and are known as intra-fractional motion error that must be compensated, as well. One of clinical strategy is using Stereotactic Body Radiation Thera...
متن کامل